
A minimal Statechart Virtual Machine

Principal Investigator: Dr. Nicolas F. Rouquette

Mission Execution and Automation Section

Jet Propulsion Laboratory
Mail Stop: 301-270

4800 Oak Grove Drive
Pasadena, California 91109

Voice: 818-354-9600 FAX: 818-393-6004
Nicolas.F.Rouquette@jpl.nasa.gov

Co-Investigators:
Mary M. Lam

Autonomy and Control Section
Jet Propulsion Laboratory
Mail Stop : 301-350
4800 Oak Grove Drive
Pasadena, California 91109

Voice: 818-354-3675
FAX: 818-393-3654
Email: mailto:Mary.M.Lam@jpl.nasa.gov

Patrick L. Crouse

NASA Goddard Space Flight Center
Mail Stop: 581.1
8800 Greenbelt Road
Greenbelt, Maryland 20771

Voice: 301-286-9613
FAX: 301-286-0243
Email: mailto:Patrick.L.Crouse@gsfc.nasa.gov

1 Problem Statement
To leverage the full potential of Statecharts as a highly intuitive and expressive diagrammatic

notation of behavior, we need a virtual machine capability for dynamically managing Statecharts
in a running system: a Statechart Virtual Machine. This capability should provide a low-cost
solution for Statechart management, specifically, one that does not rely on making expensive
flight software modifications. Furthermore, it should be fully accountable in the following sense:
first, explaining the behavior of a Statechart throughout its execution, and second, supporting the
analytic verification of formal properties across all possible executions of a Statechart.

The principal investigator gathered a team of scientists – Prof. David Harel at the Weizmann
Institute of Science in Israel --technologists at NASA Ames (Dr. Klaus Havelund), NASA
Goddard Space Flight Center (Patrick Crouse) and other consultants to build a Statechart Virtual
Machine as part of a research proposal to NASA UPN 632. One component of that proposal
includes a flight experiment on the WIRE testbed platform. Patrick Crouse, a SMEX mission
director at Goddard is unsure of the WIRE availability beyond FY00. Thus, there is a strong
incentive to develop the Statechart Virtual Machine experiment for WIRE as early as possible to
avoid loosing a flight experiment opportunity.

2 Justification
The UPN 632 proposal represents a challenge to coordinate scientists and technologies spread

across the US and the world. The effort is substantial, it requires over $1M of funding for over
1.5 work years for 3 years. An early prototype would help considerably this effort by identifying
the difficult issues to work on.

Although Statecharts have been highly successful for designing the fault protection capability
of Deep Space One, we don’t have an adequate characterization of the resources required to
deploy a virtual machine for Statecharts in a resource-limited environment. What’s the minimum
level of CPU performance needed? Clearly, the 35 Mips RAD 6000 has proven sufficient to
execute the compiled Statecharts of Deep Space One’s fault protection system. It is also adequate
for a much larger system like the Remote Agent Experiment at 0.1 Hz. Would 10 Mips suffice
for a Statechart Virtual Machine of some kind? Performance characterization helps but if the 386
processor of the WIRE testbed can do it, then we will have a valuable reference point. The
minimal Statechart Virtual Machine is deliberately reduced in scope so that the performance
envelope of the 386 processor does not constitute an insurmountable constraint.

3 Benefits
The main benefit of building the minimal Statechart Virtual Machine is to take advantage of

the WIRE testbed availability while it lasts. There are a number of other indirect benefits as well.
As part of the UPN 632 proposal, we have identified a broad range of potential applications for a
Statechart Virtual Machine. A fairly large number of people would like to see this concept
materialize to better evaluate it. Bob Rasmussen also encouraged me to aggressively seek
sources of funding to do just that.

A flight demonstration on WIRE will force working out technology transfer and deployment
issues between JPL and GSFC. This difficulty should then make it easier to coordinate similar

applications of the STVM to internal projects at JPL, where conventional wisdom often blurs the
distinction between technology transfer and reuse with people reuse.

As a low-power, resource-tight computing platform, WIRE is an excellent testbed for project
managers who contemplate using Statecharts in rovers and other small devices. For those who
contemplate using Statecharts across the board for all behavioral aspects, the flight experiment
will give a better metric for evaluating how well the technology scales up.

Most importantly, the benefit of this minimal Statechart Virtual Machine is to exercise and
prototype early the technologies and tools involved in the UPN 632 proposal for the full-scale
Statechart Virtual Machine. This is particularly important to help us organize the project in two
sensible deliverables relative to the Statechart notation and semantics, for example, finite state
machines at end of the first year and full Statechart notation and semantics at the end of the
second year.

 Finally, this proposal gives us an opportunity to study both the technologies involved in
building a Statechart Virtual machine capability, including those pertaining to ground systems
operations.

4 What is a Statechart Virtual Machine
The core of a Statechart Virtual Machine (STVM) involves four main components: an XML

parser, a scheduler and modules for introspection and monitoring (See Figure 1). The UML
specification includes an XML interchange format for UML model content. This makes working
with UML models in XML a vendor-neutral, tool-neutral process and saves tool-specific
interfaces and code generators.

4.1 Statechart Execution Scheduler
The scheduler is the core Statechart execution engine. The Statechart semantics defined in the

UML specification leave a number of open decisions, such as the order of resolution for
conflicting transitions and the interleaving of concurrent AND states. For this proposal, such
issues are drastically simplified because there is no concurrency in simple states and simple
transitions. For full Statechart notation and semantics, this scheduler provides explicit access to
the scheduling mechanisms and policies that govern Statechart execution. This access is
particularly important to interface model-based checking tools like those developed in Dr.
Michael Lowry’s group at NASA Ames.

4.2 Statechart Introspection and Monitoring
Introspection refers to the process of querying the Statechart database about the static

definition of a Statechart characteristics and possible behavior. Monitoring refers to the process
of querying the scheduler about the dynamic properties of a Statechart execution behavior.
Introspection is not necessary to demonstrate the Minimal STVM capability. Monitoring is kept
at a minimum to produce a log of states and transitions visited during execution.

4.3 Statechart Virtual Machine Architecture

Core XML
Parser

Introspection
Module

Monitoring
Module

Execution
Scheduler

Statechart
Database

Environment

Action
Module

Initiate actions & changes
Generates events

Run-to-completion semantics
Transition selection algorithm
Event management

Read XML Statechart Definitions
Create Statechart objects

Completion & execution events
Exception signals

Queries about topology,
actions, contraints & tags

Minimal-STVM
in-scope

out-of-scope

Figure 1: Scope & Architecture of Minimal Statechart Virtual Machine

5 Schedule and Deliverables

UML
model

UML model
definition (XML)

Minimal Statechart
Definition (XML)

Rose 98i +
Unisys XMI exporter

UML DTD Minimal Statechart DTD

Java-based
XML Translator

Minimal STVM
(WIRE Spacecraft)

Execution Monitoring
Log (XML)

Minimal Statechart
Presentation Style Sheet

Statechart Log
Presentation Style Sheet

Statechart Presentation
Graphics Applet

(PGML + XML for Java
Java-enabled browser)

Definitions

Tools

Browsers

Models

Uplink go/no-go Dow nlink analysis

Figure 2: Minimal Statechart Virtual Machine and related workflow products

The deliverable products involved in this proposal are shown in Figure 2 (bold items); they are
described in the table below.

Item Description

Minimal Statechart
DTD

A subset of the UML DTD restricted to describe Statecharts
made of simple states and simple transitions

XML Translator A Java application to apply the Minimal Statechart DTD for
extracting simple Statecharts from models

Minimal STVM
(XML Parser)

A trimmed version of James Clark’s XML parser
http://www.jclark.com/xml/expat.html

Minimal STVM
(Execution Scheduler,
Monitoring & Action
Modules, Statechart

Database)

Software designed with Rhapsody for C. Full-scale code
generation from Rhapsody model to C.

Software developed according to WIRE documentation &
processes http://tracedata.nascom.nasa.gov/~wire/ up to
readiness for flight experiement.

Minimal Statechart
Definition & Log Style
Sheets & Presentation

Graphics

A Java applet based on the Portable Graphics Markup
Language (PGML) for rendering Statecharts & log
annotations in a Java-enabled browser

This proposal involves three classes of personnel differentiated by their skills base:

- “ground” software activities pertaining to processing UML models, extracting Minimal
Statecharts with the XML-based tools and visualizing Minimal Statechart definitions and
execution logs. The kills involved include: Java and XML-related technologies.

- “flight” software activities pertaining to designing the Minimal STVM with Rhapsody for
C, with a special emphasis towards full-scale automatic code generation.

- “integration & test” software activities pertaining to embedding the Minimal Statechart
Virtual Machine first in a unit test environment for WIRE and second in a ground-based
WIRE testbed at Goddard.

Because funding for WIRE operations follows fiscal year cycles, the deliverables described
here are to be completed within FY00. The minimal criteria of successful completion consists in
demonstrating the Minimal STVM in a ground-based unit test environment either at JPL or at
Goddard. The workflow products identified in Figure 2 will also be streamlined and automated
according to the automatic code generation technology work of Dr. Nicolas Rouquette originally
proposed to NASA IV&V to be completed under a CSMISS-funded extension through 3/1/2000
(See http://eis.jpl.nasa.gov/auto_sw).

6 Cost, Work Plan & Technical Approach
The principal investigator and co-investigators are planning to work with two full-time junior

staff. This proposal involves a lot of emerging software engineering technologies and practices
that unbiased junior staff can pick up quickly with proper mentoring from senior staff. The
technical depth of the proposal is intentionally kept at a minimum to allow the junior staff to
emphasize rigor with respect to applicable software engineering practices and policies. The
funding requested for this proposal is $60k.

7 Proposal evaluation

7.1 Return on investment
This proposal represents almost all of the first year UPN 632 $50k activity towards defining

the WIRE experiment. The UPN 632 version includes hierarchical states to the Minimal STVM
described here; a trivial extension to make.

Both Deep Impact (DI) and Mars Sample Return (MSR) want to reuse the Deep Space One
Fault-Protection architecture. However, the DS1 FP engine is, at the core, a mechanism for
executing compiled Statecharts. It would be a simple task to take the CSMISS Minimal STVM in
C as a replacement of the DS1 FP compiled Statechart core. This would advance the technology
transfer to DI and MSR, thereby doubling the CSMISS investment. For DI, the return is further
increased with the flexibility of the STVM versus compiled Statecharts. This can save a full time
system engineer easily 25% time on early prototyping and increased test flexibility. At current
JPL labor rates, that’s roughly $40k of burdened costs.

The total estimated return on investment after would thus be: $50k + $120k + $40k = $210k.

7.2 Endorsement
This proposal is the lite version of a UPN 632 proposal. There has not been sufficient time to

reach the co-investigators of the UPN 632 proposal to receive their endorsements. These co-
investigators are:

- Mary Lam from JPL
- Prof. David Harel, Dean of the Faculty of Mathematics at the Weizmann Institute and

Chief Technologist at I-Logix
- Dr. Klaus Havelund from NASA ARC
- Patrick Crouse, SMEX mission director at NASA GSFC

7.3 Participation with Industry and Academia
Prof. David Harel will study safety issues related to modifying Statecharts in a running system

as part of the UPN 632 work. In this proposal, such criteria are relatively trivial to state. Dr.
Bruce Douglass from I-Logix has consulted the PI regarding applying the ROPES process. We
expect the Design Hub to continue the consulting contract with I-Logix throughout the duration
of this proposal. This is important because we have never applied the ROPES process on any
completed project yet.

